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ABSTRACT

The Galerkin method is applied to Flugge's differential equations for the vibration of a
cylindrical shell under axial load and external pressure to obtain a 3N x 3N characteristic
equation in matrix form. N is the number of terms in the assumed series of displacement
functions for the u, v, and w displacements which can be selected to satisfy various boundary
conditions. For the freely-supported cylinder, an exact solution exists, and the various
assumed modes uncouple reducing the problem to the solution of a 3 x 3 characteristic
equation for each mode.

The third order characteristic equation for the freely-supported cylinder was solved for a
wide range of shell parameters. The natural vibration frequencies and buckling values for
axial load and external pressure for all three eigenvalues associated with each mode are
presented in a series of figures. The square of the vibration frequency for any mode was
found to vary linearly with axial load, and approximately linearly with an external pressure
loading for modes with two or more circumferential waves.
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FOREWORD

This report was prepared by the Vehicle Dynamics Division, Air Force Flight Dynamics
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Force Flight Dynamics Laboratory, Research and Technology Div'sion, Air Force Systems
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Dynamics Branch acting as Project Engineer.
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SYMBOLS

Symbol Definition

a radius of cylinder

A amplitude of axial displacement

A; constant associated with displacement ia the x direction

B amplitude of tangential displacement

B constant associated with displacement in the 4, direction

C amplitude of radial displacement

¢C constant associated with displacement in the z direction

Eh
D: E stiffness parameter

Dqj terms in the geaieralized stiffness matrix

E modulus of elasticity

G J torsional rigidity

h shell thickness

Hij same as Dij, except ql = 0 in all terms

10 moment of inertia per unit length

Iij integ.al

K third order matrix (genera'ized stiffness)

k h 2 non-dimensional thickness to radius parameter
i2c

-L length of shell

Lij differential operator

m number of axial half-waves

n number of circumferential vaves

M ithird order matrix (generalized mass)

uniform normal pressure (positive inward)I- axial load on shell boundary (force/unit length)

x
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SYMB9LS (CONT' D)

Symbol Definition
PO
D non-dimensional pressure parameter (positive for external pressure)

qo value of q for buckling due to external pressure

P
q2  - non-dimensional axial load parameter

qzo value of q2 for buckling due to axial load

t time

C axial displacement (x direction)

U(x) assumed displacement function for u

v tangential displacement (0 direction)

V(x) assumed displacement function for v

w radial displacement (z direction)

W(z) assumed displacement function for w

x axial coordinate

X : V matrix of displacementsýw

X B: {i matrix of displacement coefficients
Ci

{X 8V} variation of displacements
8w

z radial coordinate

2 P0 (I-v' )
EY density parameter

p density of shell material

Poisson' s ratio

circumferential coordinate

( x) mode shape

W• circular frequency

xi
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SYMBOLS (CONTr D)

Symbol Defi rition
Wo value of circular frequency for the unloaded cylinder

M-7ro axial wavelength parameter

Y:2 2w2 +q 2 X2  eigenvalue expression

y2 u2+q2 +qn 2  eigenvalue expression

[ ] rectangular or square matrix

{ } column matrix

T

{} row matrix
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SECTION I

INTRODUCTION

In recent years thin shells have been used extensively for aerospace applications because
of the high structural efficiency of this type of construction. Space capsules, boosters, space
stations, and large fuel tanks for hypersonic cruise vehicles are examples of stiffened and
unstiffened shell configurations. In many cases these shells are pressurized and subjected
to some type of loading. These loads and int.rnal pressure can have a significant effect on
the vibration characteristics. The purpose of tais investigation is to examine the combined
effects of axial load and external pressurization on the 'ibration characteristics of thin
cylindrical shells and present the results in a suitable form for use in design.

Arnold and Warburton (References 1 and 2) examined the vibration characteristics of
freely-supported shells and plotted results for several radius to thickness ratios. They in-
dicated that three natural frequencies exist for each modal pattern. The different frequencies
are associated with motions that are primarily radial, longitudinal, or torsional. The lowest
frequency is usually associated with motion which is primarily radial. Forsberg (Reference 5)
obtained an exact solution for the cylindrical shell using Flugge's equations of motion with
various homogeneous boundary conditions. Fung (References 7, 8, and 10) obtained analytical
and experimental results for the effects of internalpressurization on the vibration character-
istics of cylindrical shells. Fung and Sechler (Reference 9) and Weingarten, Morgan, and
Seide (Reference 13) obtained results for the buckling of cylindrical shells subjected to in-
ternal pressurization and axial load. A recent paper by Herrmann and Shaw (Reference 11)
on the vibration of thin shells under initial stress included the change in magnitude and
di r e c t ion of the applied load as a result of deformation and contains a comparison of
experimental data wita various shell theories.

This investigation apphies the Galerkin method to Flugge's cylindrical shell equations to
formulate a characteristic equation valid for arbitrary boundary conditions. By selecting a
series of functions for :ach of the displacements u, v, and w various boundary conditions caa
be handled. For the special case of an unloaded, freely-supported cylinder, Arnold and
Warburton (Referer.e 1) obtained an exact solution. This same solution was obtained by
Flugge (Reference- 4) for the buckling of a cylinder subjected to axial load and internal pres-
surization, and used by Herrmann (Reference 11) indicating that the same deflection mode
shape satisfies the combined problem. When a series of finctions of this form were substituted
into the equations obtained in this investigation, it is shown that the terms in the series un-
couple and Flugge's buckling results are obtained if the frequency is assumed to be zero.
Vibration results comparable lo those of Arnold and Warburton are obtained if the load pa-
rameters are assumed to be zero.

For th•.s special case the axial load parameter and frequency parameter can be combined
into a single eigenvalue expression. The eigenvalue spectrum for this case is plotted in non-
dimensional form for a wide range of shell parameters covering radial, longitudinal, and
axial deformation modes. From these charts and tables the critical buckling conditions or
vibration frequencies can be obtained for the freely-supported cylinder subjected to an axial
load and external pressurization.



SECTION II

THEORETICAL DEVELOPMENT

The coordinate system used in the analysis is the same as that of Flugge and is given in
Figure 1. The equations of motion for thin cylindrical shells including the effects of a uniform
normal pressure and an axial load can be obtained by adding the inertia terms to Flugge's
static equations given in Reference 4.

2 2 .2 U2 I+0a wa2 8 u (i-i,) 8 'u (I+w•. •; V 3 _ _

a -+4 4 -+ ' +ki L__
2 

2
OX 2 a4) 2 axO 6013X 2. 64)

a 3 x U a 3-W 1 ,2 a 2l --2 0 )

0 + a -~---q1 -------- a=-jq f --- 0()
ax 2 ax 14),,- 1 •0 ax ax2 at2

(+a a2 0V) 2 4 2 V aW2 62 cu 82v (I-Vi)Z O3v Ow [-u 2 O3v

2 - a + +- - -t- +k 2 (l-/}J a xx 2

2 (3--v) a3 , W a z w z 220
-a 2 6X 2 a , (02 - q a 6X 0 2v Y O v : 0 (2)

va-•x + ---- •+w+k O -- - -- +w+
h0 Xo P 2 oo IX-

k2 2 2 W U2 2  W 2
c02 D L DOw ~ ~ ~ 1 6WL.~T~to- )+q 2 0ax--y--± 3

where

h2pa P 2 P a2( IV,
k= 2 , : - .q 2 = yE
12 aD 2 DE

The equations of ,notion can be written in the following matrix form

or [ 1 L 12  L 13
L2 1  L 2 2  L23 v :0 (51

L 31  L 3 2  L33 W

2
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The differential operattrs L.. can be written as follows after multiplying i~quations 1 and 2
by -1.

L, z2( 'q 2  2 + (-- (I-40k) k 2 + () 2 (6)Lif -ix q 2 C) t 2

(1+ IV) a 2
L1 2  2 (7)

a 3  (Ia-i) a3

L o (t- +q ) +- +kao -x-3 - k 2 - (8)
(2+a,) #2

L 2 1  2 ax a9

2 1 + 3k)qj '32 -(0-q,) (10)L22-- o 2 iXa-atT

-I k(3-z,) 2 6 f0

2 3 33
L P + q- + k ). 83 3 a 3(12)

1 ax 2 6xo602 L)

L (I - q,) - k(3- - o Oa3
L32= 2 a'7a* (13)

[ &.'a" 2o 204_a

[,.. ,+ [-k + 20 + + 0 +20+,
2 2)xC)S

02 2 2 a 28

q, 8*2 q 2  ax 2+ Y2 a,2 (14)

To obtain a solution by Galerkin's method, the equations of motion are multiplied by the
variation of the displacements, x, and the result integrated over the volume rf the shell (Ref-
erence 12). Since the integration over the thickness has already been performed in deriving
the equations, none of the factors is a function of z. It is therefore sufficient to integrate over
the shell area. This cani be written as follows:

j I 8X [L {X}I dA =0 (5

The displacements u, v, and w are periodic in • with period 2 7Tr. Simple harmonic motion is
assumed and the displacements are written in the form of a product.

U = U ( x) cos noei°wt (16)

3
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v V (x) sin n )ewft (17)

w W ( x ) cos n# eIWt (18)

The form of the solution given previously separates the various Fourier components in
4), since for each integer value of n the functions in 4) satisfy the differential equations (Equa-
tions 1 to 3,. It is further assumed that U, V, and W can be expressed as a series of functions
(D which satisfy the appropriate boundary conditions for u, v, and w.

M
U lk A (P (19)

M v
V(x):ZI B l (x) (20)

W( X): Cj Ij ( (21)

J=l

A j, BiJ, and Ct in Equations 19 to 21 are arbitrary constants. The displacement X can now be

written

M
U os ns~e'wt Aj (ID UIX}M I

w cos ng~e'uw! C) Ix) (X

The variation nX can be written

N8u cos n4)e' Wt 8 4A, , C x)

1Wt N v8x 8 V sin n(e .7 8Bi 4) i (X) (23)
) t:I N

/ cos n 0 e'~ 1 C C (P) I

Equations 22 and 23 are substituted into Equation 15 and the integrand is expanded.

ff.fA 8u [L,,u +- L,,v +t-L13w ]+v 8[1L. u + L,,V +L23w]+-Sw [L3,u -FL_,et-L3P1]}dA:0

A

-~ (23)
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Substituting 8u, 8v, and 8w from Equation 23 into Equation 24,: N ° [ r]
cosn 0eiWt 1 8 A i (x) LL u +L v 4-L13 W

A:1

+sinn4eKNt B (I. Ix) Lz u +L v +i L
21 I 22 23 '

N

+cosnqeiWt (x) I LL3u+ L3. v-f- L}33 W dA -0 (25)
i:l

Since MA., 8Bi, and 8Ci are arbitrary, the only way that the above equation can be identically

zero is that each integral vanish individually (Reference 12).

coAsne iAi 25A (x L,1 u+L 2 v + L 3 w ]dA:O '26)

i: I, 2 N

sin noe l • 8B , (i) X L2 1 u +L2v -f L23 w dA :0 (27)

i =1,2, N

cosn e •C' C1  (x) X L 1 u+L 32 v +L 3 3 w dA:0 (28)

i = 1, 2, N

Since 8A,, 83., 8Ci, and eiwt are independent of the coordinates of dA, these can be taKen
out of the above integrals, to obtain

cos n (k (D (x) L L u +- L,-v + L 1 3 w 1 A=O (29)

i:= 12,-- N

ff sin ns v, (,x) [ u -+ L v + L 23 w ] =A0: (30)
lA 12,2, N

cosn •" Ix) L 3 1 u+L v+L W dA:0 (31)

i : 1, 2, -N

The expressions for u, v, and w given by Equations 16 +o 18 are substituted into Equations 29
to 31 with dA = ado dx and the integration performed on do. From the orthogonality of sin
no and cos no over the interval 0 to 2 7r,

2 vr

f sin 2 n do : 7 (32)

0

cos n iTd o 7r (33)

0

i5
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2 r

f sin n( 4 os n d4) 0 (34)
0

By using this orthogonality condition, Equations 29 to 31 reduce to the following form:

III + 112 +1 13:0 i 1,2 , N (35)

112 + i + I 0 i : 1,2 , N (36)
23

"I I+ 13 + 0 i = 1,2, N (37)

Where the terms in Equations 35 to 37 are as follows:

,, :+ -- (I+k )-q. 3n -C }Udx i=1,2, ---N (38)

12 2dx2 [

0

i[-no 2 d Vdx :,2, .N (39)

I:i (e: (x) a V+q kn d + ka Wdx izl,2,.-.N (40)
3 0 2 dx dx

i V: I (x) on d Udx i = 1 2, "N (41)
f20

222
0

f' : (I) (X I ,-q,) n - 23"V kn -- - Wdx 1-,,2, N (43)

23  2 dx"

T:fcX:) (x) { &,+q - n •k - k .a3kIt... Udx izI,2, N (44)31 f 2 dx dxs
0

o2 n (3-) d0
T e- (x)(I -q,) n - -' k ] Vdx i:1,2, N (45)

0 dx

W In2qa2(2 2ýd d 2_ )2]22w+k 02n - 2W (n- ](46)
330 f q dxd dx2 d+2

0
i :1,2, N

6
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U, V, and W as given by Equations 19 to 21 are substituted into Equations 38 to 46. These
expressions are substituted into Equations 35 to 37 with N = M to obtain the following form
for the characteristic equation.

K,! 12 IN II 12 IN
K If.... .*K M M 'I' M I l

21 22 2N
K K K 2 M 2 1 M2 2  2N(222 M"Y2 2W (47)

KNI KN2  KNN YN MNI MN2  M N '

where the submatrices Kij and Mij can Lbe written

D: ~D'1 2r3I 0 0

K D i D 11 D2 , M' 1 0 M22 0 (48)2122 2I 22
D ) ij Dij J

D3 D32 D33 0 33
The terms in the D, M, and Yj submatrices are,

:7 0 dx

=f'I (,u (x) a 0+(Y) .. d '5 v Wx)d• (50)12 0 ( 49)

0 I r oO(I.1 2)n dd d

D) 13 =f 0 li ( X)[1 2 k: n U x+G3d
D c4' (x) [- -j &In (D) dx (52)

0
D1( =f W_'n (l+3k) -q( x )dx (53)
DI 2f o (x)( 2-- d- (52)

0

"22f• [g~ 1.2-, 2d d

D23 if 4)V(x)[(I-qz)n- 2 n --- ] 4j. ( x)dx (54)
0

SIj 
(I-v) 2 d d3

D :fo c,(x){ao [v+ q. --- n d -,3 -0 _ , l ci,,ox) dx (55)

D =IDi (X) nI-q -n k 2 1,v( x)dx (56)02 2 dxt

7
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i) f, 2 2 d_4 d 2ae22 d2 d + (n ) ( n + (x)dx (57)

D 3dx4 dx 2

0

ij Ue U
M o (X) () d(58

11 0
IjO V

J r xv (x) dx (59)

;ij 't) ww

M 33 =f (X) W dx (60)
0Si~ A i
= B(61)

!C

A solution is obtained by selecting a series of displacement functions (D (x), e (x), and

W (x) for U(x), V(x), and W(x) respectively which satisfy the appropriate boLudary conditions

for the shell. Integrals (Equations 49 to 61) are evaluated and the various Kij and Mij matrices
given by Equation 48 are formed and substituted into Equation 47 which can be solved by stan-
dard eigenvalue techniques.

If the series of displacement functions selected for CbU(x), V(x), and 'DW() each form an

orthogonal set, thp generalized mass matrix Muj in Equation 47 will be diagonal.

One set of functions which can be used for the series of assumed displacem'3nts ct) are the
beam functions, whica satisfy the following differential equation:

k4, =0 (62)

dx
4

The functions, ), taken as the assumed modes, satisfy various combinations of the following
boundary conditions at x = 0, and x =

(D =(63)

S: 0 (64)

01 (65)

QD"' 0 (661

The beam functions satisfying Equation 62 for various combinations of the boundary con-
ditions (Equations 63 to 66) are orthogonal. Integrals of the beam functions and their deriv-
atives have been evaluated by Felgar, and formulas for these integrals are given in Ref-

erence 3. In general, the terms in the matrix Ki0 given by Equatiots 49 to 57 involve integrals

of combinahons of VIU(x), vi(x), and Vwi(x) which may be different functions. These are not
tabulated. One approach would be to evaluate the various integrals in Equations 49 to 57 numer-
ically. -his would allow an independent choice of the function to represent each of the functions
U(x), V(x), and V% (x).
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Figure 1. Cocrdinate System
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SECTION III

SOLUTION FOR THE FREELY-SUPPORTED CYLINDER

An exact solution can be obtai'.ied for the vibration of a cylindrical shell with axial loads
and internal pressurization for the following boundary oonditions:

W :0 0t X 0, 167)
V : 0 at x 0, (68)
Mx 0 at x 0 0, (69)

NX 0 at xA O,k. (70,

The boundary conditi3ns corresponding to Equations 67 to 70 are satisfied if the funtions
U, V, and W satisfy the following conditions at x -ý 0 and x -X:

dUdU 0 (711
dx

V :0 (72)
d2W

W: - 0 (73)d K

These boundary condi~ions are satisfied by the following normalized di..placemanrt functions:

U mrX (74)<• ;x) :J• cos £ 7•

n, "rr (75)

W / = 2 sin m rx (76)

Tie previous sine and cosine functions are orthonormal on the interva• 0 to 2Vr and nave the
:ollowing properties:

rO (irrohjx) (y'J-X dx :{ .,,:I
fC 0, (77)

r Ss IX :(78)r () T 2i ) .esi )dx 0 ~, •

; "• (IF 5 ! I T- I--- , dx 0 (79)
0 -0

For this case the various integrals it Equations 49 to 60 are zero for i • j and reduce, to the
following for i j = m.

mm 2m f (I-i-) ( 2t (80)
D a (I--42) TV + k (0 )

14 (j )m2

13



AFFDL-TR-67-28

S V 2 knm k3T (82)- k j (--7-) e.-ko(-...) e
Dmm -o(I+i') mm 83
m, -a (1 1 ( mT -) ni (83)

21 2

D22  n (I-q, ) 4-a ( l+3k) - , mr 2

mm 2mm2 n (1-,q + [2 (1+_3k) - qj ( (84)

D rm m I + -02 (2 -u ) 2 
(m8

D2 3  2 k (5

a z, +q, - n k m " - k (,1 (86)
3 1 2 .] )at
mm 2o 3 V

D32  = (!-q,)n, + ' -2 k ( (87)

,2, °, •°_, 1 ,,., 2oM°,_o) ,,(,4+ m,,•7 r

mmM. = (89)

M22mm :A (90)

Mmm 33 (91)

The expressions giver. by Equations 80 to 91 are substituted into Equation 47 to obtain the
following:

0 K22 Y2 0 M2 2  Y2 (
0 ) . (92)

U1

I N YN

0 K 22 _-)" 2 W2 M 22"Y2 0( 3

0 (KN N- _• 2•4i •tVNN YN! . 0(3
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Equation 93 is of a diagonal form and consists of the direct sum of 3 x 3 ,Ihmlatrices. 1'h1i
indicates that an exact solution exists for the assumed functions selected. For a non-trixal
solution,

I _ 2 2 II
K M 22 2 2 M22

:0 O 94)

(KNN 2WZMNN

Applying the Laplace expansion to the above,

K 11 2w 2 M 1 K22"- 2w 2 M22 IKNN _ MXNN :0 '95,

or
Imm 2 2 Mmm I

1 K -y w M 1:0 m: 1,2, N (9 6
d

IK -M W M j Ym:0 m 1, 2, N (97)

The expressions for Kii and Mii are substituted into Equation 97. The resulting express.on

is divided by -, and y2w2 and (12 (---7-) are taken to the right-hand side. A non-dimensional

wavelength parameter X is introduced, and the follo\king result is olhtaned:

FD D D2 13 Am Am

Dm Dm Dm1 8 U -q Bm (98)
21 22 2

m m Dm m 
2

L 31 32 33 m =1,2, N

where

\.m~r o (;9)

D11 :X tz [ (I-si) 1t+ I-q 1 2 ((Q

12:D21 X(- 2 -n+(01

D22 nnI q

222

D2 2 n~ 2I -q )+ A'2  ((z' I1+ 3k )1 (103)

12
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D23 D3  (I-q n+ 2 kn (104)

D33: [I- n q, + k (n2-)-+2n22 +kX 4  (105)

In Equation 98 the vibration frequencies and axial load parameter are combined to form a
single eigenvalue expression. This is discussed in more detail in Section IV.

If w is assumed to be zero in Equation 98 these equations are identical to those given by
Flugge :n Reference 4 for the buckling of a cylindrical shell subjected to an axial load and
internal pressure. If the axial loa" parmmeter q% and internal pressure parameter q, are

assumed to be zero in E&u itiun 98 these equations are comoarable to those obtained by Arnold
and Warburton (13ffereace 1). Small differences which occu" are in terms containing the
thickness to radius paranitter k whicn is snialfor cylinders for which the thin shell equations
apply.

Once the mode rumbers are selected, the values uf tbe L,. tvrms cain bc e ialuated fsr a given
1,

shell having 'he assumed bo-xnuary conditiors and a given !cad of ,4. This is accomplished by
m iraassigning integer values to n and to m (in A = Xi-___) which represent the number of circum-

ferential waves and the axial half-waves respectively.

A solution can be obtained by solving Equation 98 by matrix iteration or by reducing Equa-
tion 98 to a determinant form and solving the resulting third order characteristic equation.

J- AT 0 
2 w 2 + q 2 )) (106)

or

ol -A 0i D0
D11 -D12 D13

D222 D-" A D 23 :0 (107)

D1 3 D23 D33-A

After expanding,
2 2 2

,ý -A2 (DII +D22+D33)"+ A D,1 D22+ D12 D 33-+ D022D33- D0 2 D 13 0D23 )DO D22 D33

- 2D12 D13 D23 1- D13 D22 + D;2 D33 2+ D 3 D1 i (I08)

Three values of A can be obtained from Equation 108 indicating that three frequencies exist
for each of the assumed mode shapes. This result has been previously reported by Arnold and
Warburton (Reference 2) and others. These various frequencies are associated with differentA B
values of the amplitude ratios A and -I-. For one value of the frequency, usually the lowest,

C C
C > A, B and the motion is radial or in the z direction. The other two values of frequency are
usually associated with motion that is tangential, B > A, C wlier~e the primary displacement is
v,or longitudinal vibration, whereA> B, C and the u displacement predominates. it is noted that
ior the cylindrical shell this coupling between displacements exists.

13
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For the non-axisymmetric modes (n , o) the values of A can be determined from Equa-A B
tion 108 and the amplitude ratios A-and 1 can be obtained from

D 2D2- D233 e (109)

Solving Equation 109 for the amplibtJe ratios yields

012 (D 22 -A ) - O0)

D 12 0,

D13 D23

B : 02 (03 - A

C D2 D3 (D 2 2 -A)
D2 3 -D12

A coupling between the three displacements u, v, and w exists for the non-axisymmetric modes.

For the special case of ayx',;ymmetric motion with n = o. the terms D12, D21' D23, and D32

in Equation 98 are zero, and the tangential displacement v can be uncoupled from the axial
and radial displacements. With n = o, Equation 98 can be written as two equations

1 i3 m 2) +q k (112)

D0  0m J M Cm) (2 2 X CrrS
13 33

m: I, 2, N

D22 2 W2 2 Bin: 0

in: 1,2,

Setting the determinants of Equations 112 and 113 equal to zero and expanding gives:

2-(0-( +D A+ 0 D - : 0 (114)12 ( + D33) A il, D33 13

A :0 22 (115)

Equation 115 represents the eigenvalue for pure torsional vibration, and Equation 114 cou-
pled radial and axial vibration eigenvalues. The amplitude ratios for the latter are given by

A -D, 3  (116)

C (D, -A)

14
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SECTION IV

VIBRATION AND BUCKLING RESULTS FOR AXIAL LOADING

It was shown in Section III that for the specific case of a freely-supported cylinder, the
various terms in the series of assumed modes uncouple, indicating that an ,xact solution was2 2
obtained. The frequency parameter y w was combined with the product of the axial load pa-
rameter q, and the square of the axial wave parameter ) to form a s ingle eigenvalue

expression A(X, n).
A (X,n) : W 2 +q 2  (117)

The expressions D which make up the coefficients of the characteristic equation contain

the shell parameters v and k , the wave parameters n and X, and external pressure parameter
q1 " The parameters w and q2 appear only in the parameter A. When integer values are as-

signed to the number of circumferential waves n and axial half-waves m, the mode shape is,
in effect, specified and solution of the appropriate characteristic equations y ieds the
eigenvwlues for that mode. Some typical mode shapes are shown in Figure 2. It is noted that
for the boundary conditions considered, the eigenvalues A(X, n) can be obtained without spec-
ifying a value for the axial loadparameterq2. The eigenvalues obtained depend on the internal

pressure, however, since the coefficients of the characteristic equations contain the parameter
qI*

In this Section, the effects of internal pressure are neglected and ql is considered to be

zero. If the parameter q2 is zero, the eigenvalues obtained for the specified mode cor-
22

respond to the values of the vibration frequency parameter y 0 for the shell with no axial
loading. The circular frequency for the unloaded shell is w .

A (X,n) :y 2 (118)
0

From the three values of A (X, n) associated with each mode, the vip: ation frequencies,

W for radiai, longitudinal, and torsional vibration having the specified mode shape can be

determined for a zero value of axial load. These results co--rrespond to those obtained in
Reference 1.

The characteristic equation (Equation 108 or Equations .114 and 115) for the axisymmetric
modes (n = 0) was solved for a range of radius to thickness ratios from 20 to 5000. For large

values of the radius to thickness ratio (h= 2000, 5000) and large values of-ma, one of the roots
h ma

was quite small (A <<1). In this case, greater accuracy was obtained by solving the smallest
eigenvalue using only the linear terms of Equation 108. The results are given in Figures 3
through , 6 for the first eigenvalue which is radial deformation (C >A, B). Figure 17 gives the
results for the second eigenvalue, and Figure 18 the results for the third eigenvalue. The
results for the .txisymmetric case (n = o) are given in Figure 19.

A single figure covers the range of radius to thickness ratios from 20 to 5000 for modes
corresponding to the second and third eigenvalues. Since the results are independent of the
radius to thickness ratio, bending effects are relatively unimportant as compared to stretching
or membrane effects. The changes in the eigenvalue spectra with various values of radius to
thickness for radial deformation indicate that these modes involve primarily bending effecLs.

15
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Two curves are given for each radius to thickness ratio for radial deformation. In one case

,/- is plotted versus the an ial wavelength parameter - for different values of n or numberIlia
of circumferential waves, and in the other case IN is plotted versus n for different values
of -I. For a given cylinder the ratio I is fixed. By assigning integer values to m in the pa-

maa
rameter -- the values of for various modes can be determined from the figures.. Since

ma
YE is equal to yw for q2 = 0, the natural vibration frequencies for the unloaded shell can

be obtained from these figures.,

For modes having one circumferential wave ( n = 1) the amplitude of the radial and tangential
displacements corresponding to the lowest eigenvalue are approximately equal and greater than
the axial displacement for values of -1 > 3.5 and the deflection shape is similar to beam bend-

ma
ing with little deviation from a circular cross-section. This is consistent with the results re-
ported by Forsberg (Reference 6).

It was shown in Section III for the axisymmetric case (n = 0) that the torsional displacement
uncouples from the radial and axial displacements. One of the eigenvalues corresponds to
pure torsional vibration while the other two involve coupled radial and axial motion.

A simple expression for the torsional vibration can be obtained using Equations 115 and
103.

2 2 (I- v)(1+3k) (119)A(X,n) -"T wo
0 2

After solving w and substituting y, Equation U19 reduces to
0

m 7r E(I + 3k) (?0)

I V 2 PI + m:1,2,

For small values of k, (k <<1), this can be written

m /r E
(0o 2p ('zd m:1,2, (121)

Equation 121 is the same recuit one would obiamn for the torsional vibration of a clamped-
clamped tube starting with the following differential equation

d2 2

d 2 v :0 (122)2
dx GJ

For the freely-supported cylindrical shell a boundary conditionof zero tangential displacement
was assumed at both ends of the shell which corresponds to clamped ends for torsion of a
hollow shaft or tube.

The lowest eigenvalue for the axisymmetric modes is associated with radial deformation

(C >A) for a value of - < 2.. The lowest eigenvalue is associated with torsional vibration for
ma

values of the parameter- >2. For values of -- greater than a value approximately equalma ma

to 7r, the largest eigenvalue corresponds to radial deformation (C >A). The lowest frequency

16
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of axisymmetric vibration for a freely-supported cylinder with-- >7r corresponds to pure
ma

torvsonal motion. The highest frequency corresponds to radial motion (Figure 19). rhis result
was reported by Forsberg in Reference 6.

For small values of R and low values of n the second eigenvalue yields amplitude ratios
ma

(B>A, C) while modes having larger values of - and n have amplitude ratios (A>B, C). Thus' ma
the second cigenvalue corresponds to torsional vibration for some modes and axial vibration
for other modes, as indicated in Figure 17. In Figure 18 a similar result is obtained for the
third eigenvalue.

It can be seen from the figures that for the freely-supported cylinder under consideration,
the lowest vibration frequency is associated with radial vibration for non-axisymmetric modes
except for long cylinders with one circumferential wave, Among the various radial vibration
frequencies the lowest value !or the unloaded shell is obtained for one axial half-wave (m = 1).
This leads to the largest value of ---. The number of circumferential waves associated with

ma
the lowest radial vibration frequency is a tunction of the shell geometry or length to radius

ratio -a and radius to thickness ratio h" The larger the ratio of radius to thickness the greater
the number of circumfarential waves in the minimum frequency vibration mode.

For non-axisymmetric vibration frequencies corresponding to the second and third
eigenvalues, the lowest frequencies are obtained for modes with one axial half-wave as in the
case of radial vibration, and increase as the number of half-waves increase. The number of
circumferential waves associated with the lowest frequency, however, for a given number of
axial half-wa-7es is one and the frequency increases as the number of circumferential waves
increases. Thus for non-axisymmetric vibration corresponding to the second and third
eigenvalues, the lowest frequencies are those for one circumferential wave, and one axial
half-wave, and may involve either motion which is axial or torsional depending on the vE lue

of -/ 1cr a given shell. For cylinders with a value of--- < 2 the second eigenvalue corre-
a a

sponds to torsional vibration and for cylinders withl >2 to axial vibration (Figure 17).
a

If the freouency is assumed to be zero, the eigenvalues for any mode are the values of the
buckling parameter q2 for that mode. From these eigenvalues the axial loading for buckling

given the symbol q20, can be determined for the specified mode

A (X ,n ) = q Xo 20 (123)

The three eigenvalues A (X, n) associated with each deflection mode correspond to buckling

deformations which are radial, axial, or tangential. The lowest eigenvalue for non-
axisymmetric modes is associated with buckling which involves radial deformation except
for the modes with one circumferential wave.

Since the eigenvalues for a given mode shape can be obtained without specifying a value for
q2 the values A (X, n) in Equation 123 for the buckling lGads are the same as those for the

circular frequency of an unloaded cylinder, Equation 118, or the vibration of a cylinder loaded
below the buckling value, Equation 117. In addition the amplitude ratios A/C and B/C are the
same for the various displacements.

17
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Both sides of Equation 117 can be divided by A(X, n) to obtain

Y W +q2 (124)
A(X, n)

or

Y , W q 2
IA (125)

A ( •, n) (X,n)

After substituting for A(X, n) in Eqcration 125 from Equations 118 or 123 the following
result is obtUined:

q 20

or
2 2/ q20i q0 I 20 (127)

Equation 127 shows for a given cylinder, and for the values of A(X, n) associated with a
given deflection mode, that the square of the vibration frequency var.eL., linearly with the axial
load, or axial load parameter q2, For positive values of q2 (compressive ioadinge the square

of the vibration frequency w varies linearly from its value for no axial loading, wo, to zero

at the buckling load q°2 = q020" A compressive loading beyond this point would lead to imaginary

frequencies and indicate that the cylinder was statically unstable for that deformation mode
and loading. Negative values of q2 correspond to a tensile loading and increase the natural

vibration frequencies for a given mode.

The relationship between the vibration frequencies and axial load given by Equation 127
was obtainable because the deformation mode shape for natural vibrations and buckling are
the same for the particular boundary conditions considered. The frequency and axial load
parameters were combined into a single eigenvalue expression.

The lowest buckling mode, or minimum value of q2 0 is generally not associated with a mode

shape having one axial half-wave as is the case for the minimum vibration frequency for no
axial load. It is shown in Equation 123 that the minimum buckling load q2 0 is associated with

the minimum value of ' 2X n). For a given number uf axial half-waves, m, the lowest vibration

frequency and the lowest buckling load have the same number oi circuniferential waves, n.

The buckling values q2 0 for axial compression are obtained from Equation 123 after the

eigenvalues have been obtained from Equation 108 for non-axisymmatric modes (n / o) and
Equations 114 and 115 for axisymrnetric modes. The buckling results obtained are the same
as those of Flugge (Reference 4) since the equations are identical. Sinie only the buckling
envelope is given in Reference 4 for various radius to thicknes,' ratios, the con-plete buckling
curves are plotted in Figures 20 through 36 for use with Equations 126 and 127,

The various elgenvalues were obtained from solution of the cubic equation except where
the linear solution gave greater accuracy for the lowest root.

18
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Tne buckling results for axial compression are plotted in Firure 20 for the axisymmetric
modes. The results for buckling involving radial deformation are given in Figures 21 through
34 for radius to thickness ratios from 20 to 5000. Figure 35 is a plot of the buckling values
corresponding to the second eigenvalue and Figure 36 is a plct of the buckling values corre-
sponding to the third eigenvalue. As in the case of free vibration each plot for the second and
third eigenvalue contains both torsional deformation and axial deformation. A single figure
for each case covers the range of radius to thickness ratios from 20 to 5000 for these higher
buckling values, indicating zhal bending Effects are unimportant for these modes.

Since buckling modes with one circumferential wave have the lowest eigenvalue, as in the
vibration case, the amplitude ratio for radial and tangential displacements approaches -1.
These displacements are larger than the axial displacement for values of-:-- >3.5. These

ma
buckling modes are similar to column buckling with little deviation from the circular cross
section. In Reference 4 Flugge shows that the buckling values for this mcaie approach the

Euler column values asymptotically for large values of ma'

For the case of axisymmetric buckling (n = 0) due to an axial load, Figure 20 shows that

for values of -L< 2 the lowest buckling value is associated with radial deformation. If thema
values of _L > 2 the lowest axisymmetric buckling value involves tcrsional deformation. As

in the vibration case, the torsional displacement uncouples from the radial and axial displace-
ment for the axisymmetric modes. The expression for this pure torsional buckling due to
axial load can be written.

2 -D - 2

For values of k<<l this can be approximated

P (I-is')
q D 2 (129)

or
Eh

P Eh(130)
2(1+ Yi

in terms of the axial load per unit length on the cylinder boundary. In Equation 129 it is shown
that the value of q2 0 for torsional buckling due to an axial load is a constant for a given cyl-

inder. This also is shown in Figure 20.

While values of the buckling parameter q2 0 for various modes corresponding to the second

and third eigenvalue are unimportant from a stability standpoint they are plotted in F igures 35
and 36 for use with Equation 126 or 127. As in the vibration case the minimum buckling values
for the second and third eigenvalues, for the non-axisymmetric modes, occur for one circum-

ferential wave and sn-all values of - or a large number of axial half-waves.
ma

The vibration frequencies for freely-supported cylinders with an axial load can be deter-
mined by using Figures 20 through 36 and Equation 126 or 127, These equations are valid
for any of the three eigenvalues for a given deformation mode. For a given cylinder it would
be necessary to select a mode of interest by assigning integer values to n and m, and calcu-

lating a value for L. After determining whether radial, torsional, or axial vibration is of
ma

interest the values of w and 120 can be deterrilined from the appropriate charts for that
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particular n and The value of the paramt, ter q2 for the applied loading can be calculated
ma

and the new frequency w or the frequercy ratio (-H.) can be calculated from Equation 126 or

"L27. If the shell is subjected to an axial tension 13oding, a negative value for q 2 is used in
the formulas which yields an increase in frequency,

It can be seen that the greatest change in frequency occurs in those modes having the lowest
buckling values q20,
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Figure 2. Deflection modes
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SECTION V

BUCKLING RESULTS FOR EXTERNAL PRESSURE

The buckling values f-.r a freely-supported cylinder subjected to only external pressure can
be obtained by setting the parameters q2 and w equal to zero in the various terms of the char-

acteristic determinant and separating the terms containing q1 from the expr.ssions D 1 in

Equation 98. The external pressure parameter q, is given the symbol q1 0 to indiacate that it
is the buckling value.

[(H,2 - n~ )i H 2  (H, 3 -q, 0 \) 1 A)

H12  (H 22 - q,,n 2 ) (H 23 -ql 0 n) = :0 (131)

(HI 3 - qo ) (H2 3 - qo n ) (H3 3 -q 0 n 2 ) C

Expressions for the various terms 1ij can be obtained by subtracting the q1 terms from

the expressions for D in Equaticns 100 through 105.

For a non-trivial solution, the determinant of the 3 x 3 matrix above must be zero. After

expanding this determinant and collecting lixe powers of ql 0 the following third order char-

acteristic equation for buckling due to external pressure is obtained-,
q3 [-...G n' n + [n4 (H,,+H H.3 )+2H, 2 nX -2nXHIt _2 H-

3 2 2-2n H, 3 -n 2 H,, ]+q 10 -n 2 (H, H2 2+ H,,H +H 2 H 3) +n ( H, 3 + H2 + H? 3

-2H, (nOH3 +XH 3 )+2XH, 3 H 2 2 +Zn H,,H 2 3]+ H,, H2H3 3 +2H, 2 H, 3 H2 3

2 2 (132)
-H 3 H2 2 - H12 H3 3 -H 2 3 H,, :0

Equation 132 is valid only for non-axisymmetric modes (rn>o). As in the case of vibration and
buckling due to an axial load, the characteristic equation for buckling due to external pressure
is a cubic equation, and three buckling values, q1 0 , can be obtained. The expressions for the

amplitude ratios for the various buckling values are

(H2 2-q,on 2 ) (H,3 -q, 0 X)
A H,2 - (H2 3 -q,on

H,_-.- H,C (H22- q1o n2') (, 1 -q~o n 2133

(H 2 3 - q10 n ) (H1, --qon )
B H,2 -(H, 3 -q~o X)B H 1

(H, - qo n2 ) (H2 2 - qto 2

H, 2  H ,2
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As for both vibration and buckling due to axial 'oad, the non-axisymmetric modes involve a
a coupling between the three displacements u, v, and w.

For some modes, the solution of Equation 132 yielL s one negativc and two positive buckling

values. The negative value for ql0 indicates buckling di e to internal pressure, since a positive

value for ql0 corresponds to external pressure. In those cases where a negative buckling

value was obtained for ql 0 there were two buckling values for the given mode which had

primarily radial deformation. One of these was associated with the negative value of ql0 and

the other with the lowest positive value for q1 0. The only exception is for modes baving one

circumferential wave, where for long shells the radial and tangential displacements were
approximately equal and both were greater than the axial deformation (CQB>A), which would
represent "beam modes" for the cylinder. In the cases where three positive values were
obtained for q1 0 one corresponded to radial deformation (C >A, B) one to tangential deforma-

tion (B>A, C) and one to axial deformation (A>B, C).

The lowest positive buckling values for q10 (external pressure) for various modes are

plotted in Figures 37 to 50 for various values of radius to thickness from 20 to 5000. There
are two figures for each radius to thickness ratio. In one figure ql 0 is plotted versus the
axial wavelength parameter for various values of n, and in the other q10 is plotted versus

ma 4e
the number of circumferential waves, n, for various values of --. A value of the lowest buck-

ma
ling load for the various modes was obtained from the cubic characteristic equation, Equa-
tion 132, and also the linear form of this equation, and the more accurate result plotted in the
figures. rhis was determined by substituting each result back into Equation 132 and checking
the residual. For small values of ql 0 associated with radius to thickness ratios from 2000 to

5000 and values of -k > 5, the linear equation generally gave greater accuracy for the lowest
ma

root. This is because of the numerical accuracy which was obtained from the digital computer
program used to obtain the roots of the cubic equation. As for both vibration and buckling due
to axial load, the lowest values of the character stic equation were generally associated with
deformation which was primarily radial and the results were dependent on the radius to
thickness ratio 2 indicating that bending effects are important for these cases.

h

The modes having one circumferential wave do notappear in Figures 37 through 50 because
the buckling values for external pressure for these modes are higher than for modes with two
or more circumferential waves. The lowest buckling value for external pressure decreases

as the parameter -9- increases, indicating that for a given cylinder the lowest buckling value,
ma

q1 0 , is associated with a mode having one axial half-wave, since this leads to the largest

value of -j. For the large values of -L the lowest buckling values for external pressure
I ma

are associs ed with two circumferential waves (n = 2). As the value of the parameter- a de-

creases the -umber of circumferential waves associated with the lowest buckling value in-
creases. These results were obtained by Flugge (Reference 4), using only the linear terms of
the characteristic equation. Flugge points out Qiat the linear form of the characteristic equa-

h__2
tion n = 2 and X= 0, where X = -ya, gives a value of 3k for q1 0 where k = indicating

12a 2

that the curve for n = 2 is asymptotic to 3k for large values of--.ema
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The buckling results for external pressure for modes having one circumferential wave are

given in Figure 51 for values of A from 20 to 5000. Two buckling values were obtained forh
external pressure and one negative buckling value for ql0 which represents internal pressure.

For values of < 7r there are two buckling modes which iavolve radial deformation, with the
ma

value for external presstu e lower than the value for internal pressure. There is also a higher
buckling value for external pressure which involves torsional deformation. The buckling values

appear to be a function of the ratio of radius to thickness for -;t<1, and are essentially the

same for values of - from 20 to 5000 for-I > 1.

hsaa

Flugge (Reference 4), in working with the linear form of the characteristic equation, points

out that the buckling load q1 0 for this case changes from positive to negative at -Z = 7r, with
ma

the negative values associated with i-0>-r. In Figure 51, where all three buckling values are

shown, it can be seen that the buckling curve for internal pressure crosses tl buckling curve

for external pressure at __- = 7-. Thus the lowest buckling load, ql 0 , occurs for externalma2
pressure for - < 7r and internal pressure for--> 7r. For values of -k> vr the bucklingma ma ma
results for internalpressure have an amplitude ratio B/C which is approximately -1, indicating
that the amplitude of the radial and tangential displacements are approximately equal and both
are larger than the axial deformation. This represents deflectior with little distortion of the
cylinder cross section and would represent "beam modes" for the cylinder.

For values of aJ>4 the lowest buckling value for external pressure represents axial de-ma
formation. Thus, for values of -0->4 the buckling value for internal pressure was a "beam

ma-
mode", while the lowest buckling value for external pressure involved axial deformation, and
the second buckling value for external pressure, torsional deformation.

For the case of axisymmetric buckling (n = 0 modes) due to external pressure, the terms
H1 2 and H2 3 in Equation 131 are zero, and the tangential displacement v can be uncoupled

from the axial and radial displacements as for both vibration and buckling due to axial load.
Equation 98 can be written as two equations for these modes.

H13 -HXq 0o H3 3  C

H22 B = 0 (136)

The uncoupled equation for torsional deformation, Equation 136 has only the trivial solution
B = 0, indicating that axisymmetric torsional buckling does not exist for a freely-supported
cylinder subjected to external pressure.

The determinant of the 2 x 2 matrix in Equation 135 is expanded to form the quadratic
characteristic equation for the axisymni.tric case.

q2 Ob -q()H) t - 710 (.)-q (ZH )+ H3 - :0 (,37)
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The amplitude ritio involves only coupled radial and axial displacement for this case,

A (H 13 - q 0 X)(138)

C Hit

The buckling values for externalpressure obtained from Equation 137 are plotted in Figure 52.
One positive value for q1 0 and one negative value for ql0 were obtained for range of radius to

thickness ratios from 20 to 5000 and the range of the axial wavelength parameter, I-from
ma

.2 to 15. The lower buckling value is for external pressure. For small values of k, (k<<l),
2where k = -and 'for X-- 0, where X = In-- Equation 137 yields the following values for

12aq10 :

q :0 -i(-I 1139)

This gives a buckling value for external pressure ofq 1 0 = 1-v, and a buckling value of

a 10 = -1-v, which represents internal pressure, for !1ng thin shells. If Poisson's ratio, V, were

zero, the buckling value for internal and external pressure would be 1. In Figure 52 it is

shown that these simple buckling values appear to be valid for values ofa from 500 to 5000h
for the full range of -t examined (.2S-- S 15), and for values of- from 20 to 100 for

rma ma h

ma

The buckling values for internal pressure for all modes are shown in Figure 53. These

buckling values are associated with radial deformation, except for n = 1 with L > 7r, which
ma

repr.esents the "beam mode" as previously discussed. The modes with two circumferential

waves yield a negative value for q1 0 for - 1, which appears to get very large as maprahes yel Fo nea t e valu e o f o !0 ma m--a ap

proaches 1. For a value of > >1, Equation 132 gave only positive buckling values for q1 0 "

Similarly for three circumferential waves, a negative buckling value could be obtained for

e < .4 and all values of h examined, but at - >.4 only positive values are obtained for q10.
ma h ma -
Although it is not shown on the figure, a large negative value for q1 0 was obtained for four

circumferential waves for m = .2, while for all values of-t .25 only positive buckling

values ql 0 were obtained.

The second positive buckling value for external pressure is plotted in Figure 54, and the
third positive buckling value is plotted in Figure 55. As for both vibration and buckling due w
axial load, the second buckling value for external pressure involves torsional deformation for
some modes and axial deformation for the rest. A similar result is obtained for the third
buckling value for external pressure. The second and third positive buckling values were
essentially the same for all radius thickness ratios from 20 to 5000, indicating the predomi-
nance of membrane effects. In Figure 55, which gives the third buckling value, the curves for

n = 2, 3, and 4 were strped at -L = 1, .4, and .25 respectively, since a third positive value
ma

for (I did not exist for the next increment-L below these values,
10 ma

59



I

AFFDL-TR-67-28

2

4\

0 .1X

00

S6

-a-

"- __ __010 6

4 n:NUMBER OF
CIRCUMFERENTIAL WAVE.S

RADIAL DEFORMATION 4R IP
(C >A, B)- --

2

.001 - I II . '
.2 .4 .6 .8 1 2 4 6 8 10 15

AXIAL WAVELENGTH PARAMETER
am

Figure 37. Butckling Values for External Pressure. 20. No Axial Load (q, : 0)

bo



AFFDL-Tit-67-28

.2 -

.08

S.02 ..or .04

w AI.-
w
I02

-• // RAIA. DFO..IO
0~

.0

0 .0 0 6.. .

.0021

0 !

-1 1

.001- -t -

10.

"0 2 4 6 8 10 12 14 16 18 20

NUMBER OF CIRCUMFERENTIAL WAVES n

Figure 38. Buckling Values for External Pressure. a:20. No Axial Load (q2 = 0)

61



SAFFDL-TR-67-28

' i ",,J .... E'• I I • I I I [ I i t I,, R• I'• • I I i l Jllil I

Si• • i\ i[", I' I i lillllI

S" i i iii

S1 ' • ,;•k, k i• /k ..... i III "

: , ,' - ' [ iiiiii
SI t l !! [ -i x t l l .

e L_ i I i ij I 41N•L\I ! I\11 ,

RADIAL DEFORMATION
S(C •A, B) ....• ! I i l llll I 1 I '<i

S.2 .4 .6 .8 I 2 4 G 8 I0 15
AXIAL WAVELEI•GTH PARAMETER .I

mo

Figure 39. ]Buckling Values for F:xte•al Pres•re.--•:50. No Axial bad (q2 : 0)

62



AF FDL-TR-6 7-4'8

0 10-2 10-00

w
w 6

4

4

0

0 2
z RADIAL DEFORMATION

75 (C -Aj9 )

6-

4w

2 ~ ii -

0 2 4 6 8 10 12 14 16 8S 20 22

NUMBER OF CIRCUMFERENTIAL WAVES n

Figure 40. Buckling Values for External Pressure. a . 50. No Axial Load (q. (I)

63



A-FFl -TP-67-92

...109 8 7 6 4 4 2

10: -- "-- I II

0

IIJ

CLl

104 ____

0
4

:-J

y = -1-

0 25

6

44.
3 r- I __ -

.2 .4 .6 .8 1.0 2 4 6 8 10 15

AXIAL WAVELENGTH PARAMETER ma
am

Figure 41. Buckling Values for External Pressure. a--- 100. No Axial Load (q2  0)

64



AFFDL-TR-67-28

10-2 1 1 1 •.. I

,o

2

I*J

6

4

a 0-3 _____

0.
8

w ./

"3 -.00
4z
0 6-JZRADIAL DEFORMATION_KD (0-A,.8)

z-J\
C.)
D

2 '

10

10-4
8

0 2 4 6 8 10 12 14 16 18 20 22

NUMBER OF CIRCUMFERENTIAL WAVES n

Figure 42. Buckling Values foz External Pressu.re -1-: 100. No Axial Load (q2 0)

65



AT.W' .lr T 't r 0 n 0e0n

.1-, 61514 13 12 11109 8 7 6 5 4 3 2

6

w n2

16-4 
8

0~

-J 4

o 21
w n NUMBER OF7

CIRCUMFERENTIAL WAVES

RADIAL DEFORMATION (C>A, B)6

.2 .A .6 .8 1.024 6810 5

AXIAL WAVELENGTH PARAMETER mI

Figure 43. Buckling Values for External Pressure. a =500. No Axial Load (q,: 0)

66



AFFDL-TR-67-28

8 - / - -. 2
6 ~mo 3

a.5

0 5

w 4

2 _ 10/' -0 /0

ar 8

0.

41 4

z

S2

I0 • •RADIAL DEFORMATION
(C>A,8)

.05

6

0 2 4 6 8 10 12 14 16 18 20 22

NUMBER OF CIRCUMFERENTIAL WAVES n

Figure 44. Buckling Values for External Pressure. a' 500. No Axial Load (q2 0)

67



AFFDL-TR-67-28

n:..18171615141312 11109 8 7 6 5 4 ! 2

-3 _

01-4

ol2

w

6

0 2

"J n = NUMBER OF i11

o CIRCUMFERENTIAL WAVES
z
75 RADIAL DEFORMATION (C>A,B)

i0 -

lii" l lI ___"___

ao X

.,2 4 .6 .8 1.0 2 4 6 8 10 15

AXIAL WAVELENGTH PARAMETER I

Figure 45. Buckling Values for External Pressure. -- iOO. No Axial Load (q.. 0)
h

68



AFFDL-TR-67-28

1 .35
m a

2

10"4.

8 \-7-

w -- -

4
a-

o •3

D Io - - ......

-- -RADIAL DEFORMATION
7r (C>A,S)

6

I0

2

0 2 4 6 8 10 12 14 16 18 20 22

NUMBER OF CIRCUMFERENTIAL WAVES n

Figure 46. Buckling Values for External Pressure. A: 1000. No Axial Load (q2 0)

69



AFFDL-TR-67-28
-4 ,

! • I - .In

12
13- 9 7 5 4 3
14
15

2 16 IV
4,: I s -

. 19- -

Cr

0 
1-

z

n=~ NUMBER OF CIRCUMFERENTIAL

So ,,AVES

RADIAL DEFORMATION

- (C A,8)

6,
6 5N

.2 .4 .6 .8 1 2 4 6 8 10 15

AXIAL WAVELENGTH PARAMETER maI
ma

Figure 47. Buckling Values for External Pressure. -•:2000. No Axial Load (q2 0)

70



AFFDL-TR-67-28

,o - -l, ....,• \ -- •\
I C-I

4-

i2i

0.7'

I -T

hio~

a. 8

0 6 --

C \
Z 4 __

-II

I0
8

6
0 2 4 6 8 10 12 14 16 18 20 22

NUMBER OF CIRCUMFERENTIAL WAVES n

Figure 48. Buckling Values for External Pressure. a :2000. No Axial Load (q 2 : 0)

71



AFFDL-TR-67-28

27

10 
\

13

1- 15

16

4

0

z

m -6
010

6 n=NUMBER OF CIRCUMFERENTIAL

WAXVLWVEEEHPAAEE

27



AFFDL-TR-67-28

2-F
\ 

6
0-5 .7

10- -

0 8 .

Cr 6w

i l.... ••,1.5.

4

0 2

Z 6
:-I

O10-6

6 -I

4

2 J-

0 2 4 6 8 10 12 14 16 18 20 22

NUMBER OF CIRCUMFERENTIAL WAVES n

Figure 50. Buckling Values for External Pressure. --= 5000. No Axial Load (q 2 : 0)

Fg2

73



AFFDL-TR-67-28

6 6- -- -- _____!- -111--

0 TORSIONAL DEFORMATION

a '00

h 50

f0- DEFORMATION.w *20 _

7- 1 - : i 1 lllT R , , II I I

( IziooI! " "\L
IN &... RADIAL DEFORMATION0). "_ _ _I_ _M 1__

500

.... INTENEAXIAL DEFORMATION
z

______ __ (C B >A)
o.2LI

EXTERNAL PRESSURE

�- -- INTERNAL PRESSURE

n :I MODES

.08I...

.06-- -- -
I \

.04 ,

,2 .A .6 .8 1.0 2 4 6 8 10 15

AXIAL WAVELENGTH PARAMETERma

Figure 51. Buckling Values for One Circumferential Wave, Internal and External

Pressure. fa- 20-5000. No Axial Load (q. 0)

'4



AFFDL-TR-6 7-28

50- -- - _ _ _ - - - i -

30 - - -

20 - - - -- -

0

a - RADIAL DEFORMATION (C>A) ----

- -- -EXTERNAL PRESSURE
4 6
4 . --- INTERNAL PRESSURE --- ___

CL4 n=0MODES _

0
, i

0 50 20

z 2 %- -- - -% %

io8I

() -- E XTENA PRES-SURE-

0so-
5000

1.0 15 __ ___0_

.8--- ITN .

.6 50-5000

.4 -. n=- -ODES

S .4 .6 .8 1.0 2 4 6 8 10 20

AXIAL WAVELENGTH PARAMETER m

Figure 52. Axisymmetric Buckling, Internal, and External Pressure. a 20-5000. No
Axial Loa(q = 0)h

75



AFFDL-TR-6 7-28

80 . _ _

-I----

20- - - _ __

20 RADIAL DEFORMATION
n=NUMBER OF

5000 -2 CIRCUMFERENTIAL WAVES

cr 1

w -

020 -- --.....

.8
.4 RAD-IAL_ DEFORATIO

.hh2

.2- .M4 .6AVE1.

-j

I0 I2 .zi
8o I h0 a
.8•

AXiAL WAvELENGTH PARAMETER ma

V -.r tr .n.wlincr IY. 1hsoc r^ Tntr-*, 0 Dw~cciire.' ý - l-:9.. nOff No% Ayinl T rtqr In 0-

I i ''2

76



APFDL-TR-67-28

100

60----'-- -- --- - --

60 - - - - -

40

0 20 nrNUMBER OF0 • CIRCUMFERENTIAL WAVES

I- -- TORSIONAL DEFORMATION

8- 10 (B>A,C)

-__- - -AXIAL DEFORMATION
cc. (A>BC)< 6 - - - -. • _

g 4X_ __AJ3- . ....

44
z\ \ -t3

0 3

I \
I '

12 '' __k __ _ I

14,, k._ \6 I

.4- --
9t

; m

12

3 I

.2 .4 .6 .8 1.0 2 4 6 8 10

AXIAL. WAVELENGTH PARAMETER mo
SFigare 54. Second Buckling Value for External Pressure.-a-: 20-5000. No Axial Load

(q2 

h)

77



AFFDL-TR-67-28

100- --- 
-- -

601--- -

L\ I
- - -O - -,

- -- n=NUMBER OF

a n:CIRCUMFERENTIAL WAVES
w "n .. AXIAL DEFORMATION
l ol - TORSIONAL DEFORMATON

10

(L' IT,

o %,
-J 4jN\-

Z It I qKI

-I 12 '

I14
z%

.8'

.6

.2 .4 .6 .8 1.0 2 4 6 8 10 15

AXIAL WAVELENGTH PARAMETER m

a %T r.." An T -- A

Figure 55. Third Buckling Value for Ex.,ernal PressuIe. -h -VV. 11 Axia A,,Pz(qF2= 0)

78



AFFDL.-TR-67-28

SECTION VI

THE VIBRATION OF FREELY-SUPPORTED CYLINDERS
SUBJECTED TO AXIAL LOAD AND EXTERNAL PRESSURE

It was shown in Section IV that the axial load parameter, q2 can be combined with the fre-

quency parameter, w, to form a single eigenvalue expression, while the internal pressure
parameter qI appears in the coefficients of the resulting characteristic equation. An exami-

nation of the expressions Di, given in Equations 100 through 105, which appear in Equation 98,

2
reveals that the term -qln appears on the main diagonal of that equation. These terms can

be moved to the right-hand side of Equation 98 and combined with the vigenvalue expression
as was done with the parameter q2" The factor ql also appears in the terms D13 and D23'

indicating that the coefficients of the resulting characteristic equation would still be a function
of the external pressure parameter ql" With these changes, Equiaion 98 can be written

1H, -q2  1 1q Am Am

Hm m n- :e(y2 u 2- e2 X
2 +q n* m (140)H 12 H22 (H2z3 - q, n) 2 mq

(H -q, X) (H 3 -q, n) C m) Cm

where the terms H.. are given by subtracting the q, terms from the expressions for Di. (Equa-
tions 100 to 105). z

If the value of ql is small in the expressions for H13 and H2 3 , the parameter ql can be

dropped from the left-hand side of Equation 140 without affecting results significantly. With
this simplification, a new eigenvalue expression As(X, n) would result

A (X, n) 2 + q2 
2 + q, n2  (141)

The eigenvaluesA(X, n) would be the same as A(X, n) of Section IV because the coefficients
Hij in Equation 140 are the same as the Dij with q, = 0.

A buckling value, ql 0. can be obtained from Equation 141 by setting w and q2 equal to zero.

A (X )n) A( X n ) =q pan 2  (142)

q A(X 3 ,n) (143)
q1o " 2

If the approximation discussed in Section IV is assumed to be valid, an expression similar to
Equations 124 and 125 which include the effects of both axial load and internal pressurization
can be obtained.

10 %2 q2 q 1('4
q2 0  q1o
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or

o ' ) (145)
0P~ qo

20 10

Equations 144 and 145 indicate that the square of the vibration frequency for a freely-
supported cylinder varies linearly with both axial load and internal pressure for a given
deformation mode. For buckling due to combined loads, Equation 145 can be written

i 11 + q2 (146)
q i0 q2 0

These results are shown in Figure 56. The line (I-L)= 0 represents buckling of the cylinder.
0

Thus the coordinates of any point on this line represent combinations of axial loading and
external pressure necessary to buckle the cylinder in a given mode. S i mi l a r ly the line

(L)2= 0.5 would represent the combinations of axial load and external pressure which reduce

the square of the vibration frequency to a value of one half that for the unloaded cylinder. The

line (--=1 represents combinations of axial load and external pressure for which the vibra-

tion frequency remains unchanged.

The results obtained for buckling due to external pressure in Section V indicate that for
some modes negative buckling values are obtained, which correspond to buckling due to internal
pressure. With Equation 143, however, only positive buckliag values could be obtained since
all the eigenvalues L(\, n) are positive. Thus, buckling values obtained using Equation 143
could lead to significant errors for some modes If the actui results for ql 0 obtained frozn

the buckling equations of Section V are used in Equations 144 or 145 rather than the values
given by Equation 143, the problems arising from the negative buckling values would be al-
leviated., The use of the true values for q1 0 obtained from the buckling equations, essentially

forces Equations 144 and 145 to be correct at-- = 1. In addition, use of the actual Lcklingq10

results for q1 0 was found to exterd the range ol vaLidity of Equations 144 and 145 considerably,

that is, the equations were found to be valid where the buckling value was of the same order
of magnitude as r.

It is proposed that Equations 144, 145 or Figure 56 be used together with Figures 3 through
55 to obtain values for the vibration frequencies or buckling values for freely-supported cyl-
inders subjected to axca! loading and external pressure. For a given freely-supported cylinder,

the ratio of length to radius, -i and radius to thickness, would be fixed. A particular mode ofa h

interest could be selected by assigning integer values to the number of circumferential waves,0
n, and the number of axial half-waves, m, in the parameter Ia. It would then be necessary to

establish which of the eigenvalues associated with the p'urticular mode shape is to be examined;
that is, whether radial, torsional, axial, or in some cases, the "beam" modes are of interest.
The. values of wo, q1 0 ' and q2 0 for the particular mode of interest can be obtained from the

appropriate figure. If a given axial loading or external pressure is specified, a value for the
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parameter q2 or ql can be calculated. With this information the vibration frequency or reduc-

tion in frequency can be obtained from Equation 144, 145, or Figure 56. For combined buck-
ling results either ql or q2 could be taken as the unknown to be determined. The greatest

change in vibration frequency occurs for those modes having the lowest buckling values q10
and q20 which are usually those involving primarily radial deformation.

No simplification or approximations, other than those inherent in the original differential
equations or in the assumption of the form of the solution, are associated with the axial load
effects, discussed in Section IV. The simplifications made in arriving at Equations 144 to 146
or Figure 56 involve only the external pressure effects. The range of validity, or errors re-
sulting from use of the procedures previously outlined, were determined by comparing these
results with those obtained by using Equation 98 or 108 with all of the ql terms retained. To

avoid errors arising from reading the figures, the digital results, used in plotting the figureA,
were used in this error analysis. Calculations were made for the full ,ange of the varios
parameters involved.

Buckling calculations were made for values of pressurization equal to -. 3q%0 , .3q 1 0 , .6q 1 0

and 1.4q10 for various modes. The value of q10 used in the calculations was that which was

smallest in absolute value for that mode. In some cases this was a negative value, associated

with internal pressure. The values of--2 for buciding associated with the above pressurization

values were determined by the two methods. A comparison of these results was made for 0,

1 2, 5, 10, and 20 circumferential waves, values of 0 equal to .2. .5, 1, 5, and 10, and for

radius to thickness ratios from 20 to 5000. Since the linear relationship between the square
of the vibration frequency and axial load was established without any approximations, the

relative error in - for combined buckling would be the same as for the square of the vi-q 0
bration frequency w2 for lIadings less than the buckling values.

In general a comparison of the results indicates that for the bulk of the cases examined the

difference in the values obtained for !- were less than 1% of q2 0 . The largest discrepancyq 20
occurred for the axisymmetric modes (n e', and for modes with one circumferential wave.

The results for the axisymmetrivc modes are shown in Figure 57. The plotted points represent

the correct resilts. The two methods produce the same results at - = 0 and 1- = 1. The
a q 0 10

greatest di screpaycy occurr-d for = 20 and - .2, which would represent arelatively thick
h Ma

short cylinder. The results for -a 5 worm essentially the same for all values of the radiusma
to thickness ratio examined and produced the smallest discrepancy.

The error is generally less an n increases. Figure 58 shows a comparison of the results

for modes with one circumferential wave. Again the largest discrepancy occurs for= 20

and -1 = .2. For values of-iýa> 5 the error was )ess than 2.3% of q20 for all values of radiusma ma
to thickness.
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The results for two circumferential waves are shown in Figure 59. For values of a equal

to .5 and 1. the errors ranged from .59 to 6.8% of q2 0 for all values of the radius to thickness

ratio. For values of - > 5 the errors were much less than 1% for all values of the radius to
thickness ratio. ma -

For five circumferential waves the error for h 20 and - = .2 was 1.7% of q0 a = -. 3,hma 20aq10

(ql q3* ql
.92% of q2 0 at- .3, 1.05% of 2at - = .6, and 2.39% of q2 0 at -- = 1.4. and were lessql0ql0 ql0

less than 1% for all other values of- and -, and in most cases substantially less than 1%.ma hs

For modes having 10 and 20 circumferential waves the results were found to agree to well

within 1% for the entire range of -L and a
ma h'
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SECTION VII

RESULTS AND CONCLUSIONS

Equations are formulated which can be used to determine the vibration and buckling char-
a(teristics of cylindrical shells with various homogeneous boundary conditions under axial
loading and a constant external pressure. A method of solution is outlined which makes use of
a series of beam frmctions for the radial, tangential, and axial displacements, which satisfy
the appropriate boundary conditions involving these displacements.

Using a series of functions known to be an exact solution to the problem for the freely-
supported cylinder the equations reduced to those obtained by Flugge for the buckling of a
cylinder subjected to axial loads and a constant external pressure, if the frequency is assumed
to be zero. If the axial load and external pressure parameters are assumed to be zero, the
equations reduce to a form similar to those obtained by Arnold and Warburton for the natural
vibrations of a freely-supported cylinder.

An investigation was made of the vibration and buckling characteristics for the freely-
supported cylinder under axial loading and external pressure, since an exatt solution was
shown to exist for this case. The results discussed in the remainder of this Section are,
associated with this solution.

The characteristic equations for natural vibrations, buckling due to axial load, and buckling
due to external pressure were solved for a range of cylinder radius to thickness ratios from

20 to 5000, for values of the paraneter -1 from .2 to 15 and for all circumferential wavesma
from 0 to 20. The vibration and buckling results are presented in a series of figures.

For the freely-supported cylinde- the problem reduces to the solution of a cubic character-
istic equation, except for the axisymmetric modes, indicating that three eigenvalues exist for
each mode. A particular mode involves an integer number of circumferential waves and axial
half-waves. These eigenvalues are associated with various amplitude ratios for the radial,
axial, and tangential displacements, indicating t!. these displacements are coupled. For
vibxation or buckling under axial loading three positive eigenvalues are obtained for a given
mode and are associated with deformations which are primarily radial, axial, and torsional.
For long cylinders having one circumferential wzave the amplitude of the radial and tangential
displacement approaches a value of -1 for one of the eigenvalues. This represents the "beam'
modes for the cylinder, where the. cylinder deflects with little distortion of the circular cross-
secticxL.

For buckling due to external pressure a negative eigenvalue is obtained for some modes,
which corresponds to buckling due to internal pressure. In this case the negative eigenvalhe
and one of the positive eigenvalues for that mode are both associated with deformation which
is primarily radial.

For the axisymmetric mode (n = 0), the tangential displacement uncouples from the axial and
and radial displacements. For the natural vibration case and buckling due to axial load, the
uncoupled torsional displacement gives rise to a pure torsional vibration or buckling mode.
Two eigenvalues are associated with the coupled radial and axial displacements. For buckling
due to only external pressure, the uncoupled torsional deformation has only the trivial solu-
tion, and only the two eigenvalues associated with coupled radial and axial displacement
can be obtained.
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The eigenvalues associated with radial deformation were generally dependent on the radius

to thickness ratio p, whereas the elgenvalues associated with axial or torsional deformation

were independent of the radius to thickness ratio for values of afrom 20 to 5000.
h

The third order characteristic equation, the resulting eigenvalues, and amplitude ratios
for the vibration of an unloaded cylinder and for buckling due to axial loads are identical. The

eigenvalues A(X, n) represent the frequency parameter y22O for the unloaded cylinder and
2an

q20 X for the buckling problem.

For the vibration of freely-supported cylinders under axial loads less than the buckling
2w2 2value, the frequency parameter y"W and axial load parameter q2 X can be combined to form

22 2a single eigenvalue expression, A(>, n)=y w + q2 X. The eigenvalues can be obtained

without specifying a value for axial load. For this problem the square of the vibration frequency
for any mode was found to vary linearly with axial load.

The vibration frequency for any mode and axial loading can be obtained by knowing only the
vibration frequency of an unloaded cylinder, w0o, and the value of the buckling parameter q20

for that mode. The relationship between these parameters is given by Equation 127

w2  ( I _ -2 (127)
0 q2o

The values for w and '120 can be ob! ained from the figures, where both values should be

for deformation which is either radial, axial, or torsional. All vibration frequencies decrease
for a compressive axial loading and increase for a tensile axial loading. For a given axial
loading the relative change in vibration frequency is greatest for those modes having the
lowest buckling values q20.

For the non-axisymmetric modes (n j 0), the lowest natural vibration frequencies and
lowest buckling values for axial loading for a given mode were associated with deformation
which was radial except for long cylinders and modes with one circumferential wave where
the "beam" modes produced the lowest values.

The lowest vibration frequency for the unloaded cylinder has one axial half-wave. This is
generally not the case for the lowest buckling mode for a cylinder under axial load. It appars
that the lowest natural vibration frequency and the lowest axial buckling load, for a given
number of axial half-waves, have the same number of circumferential waves. The number of

circumferential waves depends on the value of the parameter. I and the radius to thickness
ma,

ratio a

The lowest vibration frequencies for the unloaded cylinder for torsional and axial vibration
were the axisymmetric modes (n = 0) with oni axial half-wave. The frequencies increase as
the number of circumferential waves and the number of ax-al hal!-waves increase.

The lowest natural vibration frequencies for the axisyn".netric modes (n = 0) are associated

with vibration which is radial Ioz values of - < 2 and pure torsional for values of - > 2.
ma ma
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The equation for the uncoupled axisymmetric torsional vibrittion frequency is givea by
Equation 121.

WO Mir j• _(121)

I /P(++) m= 1,2, -.
The only assumption used to obtain this equation was that the ratio of thickness to radius

is small compared to 1.

The lowest axial loading buckling value for axisymmetric modes also involves radial

deformation for ý- < 2, and pure torsional deformation for > 2. The buckling value forma ma
the axisymmetric, pure torsional mode is given by Equation 129

qP -(1- 2 (129)

20 D

with the assumption that the ratio of thickness to radius is small compared to 1. This axial
load, q2 0 ' is independent of the length of the cylinder and the number of axial half-waves in

the mode shape.

For the buckling of a freely-supported cylinder due to a pressure loading, the axisymmetric
modes and modes with one circumferential wave have buckling values, ql 0 , which are much

higher than those for two or more circumferential waves. For modes having from 0 to 4 cir-
cumferential waves, one negative buckling value is obtained, which corresponds to buckling
due to internal pressure. For the axisymmetric modes and modes with one circumferential

wave, a negative buckling value is obtained for the full range of the parameteraL from .2 toma
15. For modes having two circumferential waes, a buckling value for internal pressure exists

only for values of -.4 < 1. For modes with three circumferential waves, a buckling value forma

internal pressure exists only for values of--t < .4. For modes with four circumferentialm~a

waves a buckling value for internal pressure is obtained only for a .2. This negativema
buckling value is quite large.

For modes having one circumferential wave, the lowest buckling value results for external

pressure with radial deformation for values of t < jr, and internal pressure with a "beam"
ma

mode type deformation for values of-• > 7.

For the buckling of a freely-supported cylinder due to a constant pressure loading in an
axisymmetrIc mode (n = 0) the buckling values q1 0 involving ooupled axial and radial deforma-AI

tion are given by Equation 139 for large values of -;"

q~:-v- I (139)
a

Numerical calculations for the range of radius tb thickness ratios from - 20 to 5000 indi-I h
cate that Equation 139 can be used for values of - > 1. The deformation associated with thetie

n•a

results is radal. Both the positive and negative buckling loads had the same numerical value
for the ratio of the radial deformation to axial deformation and were of opposite sign.
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For freely-supported cylinders subjected to 1oth axial loads and a pressure loading, the
square of the vibration frequency for a given deformation mode was found to vary essentially
linearly with the pressure loading as well as the axial load for many modes. This relation-
ship is given by Equation 145,

2 2 '12 (145)
(Li q20 q(o

where wo, q2 0 , and q1 0 are the natural frequency of the unloaded shell, buckling value for

axial load, and buckling value for a pressure load, for a given deformation mode.

The errors introduced by this linear relationship are evaluated for a wide range of sheli
modes covering the full range of the shell parameters. Equation 145 was found to give poor
results for the axisymmetric modes and modes with one circumferential wave. For modes
with two circumferential waves the results were within 7% of the correct values for all modes
examined for values of le > .5. The discrepancy decreases as the number of ci .c.rent..i A

ma
waves in the mode shape increases. Buckling values for a combined axial and pressure loading
can be obtained by setting w equal to zero in Equation 145.

For those modes having only positive buckling values for external pressure, external
pressure decreases the vibration frequency and internal pressure increases the vibration
frequency for that mode. For those modes having negative buckling values corresponding ic
internal pressure, the vibration frequency appears ýo increase with external pressure and
decreases with inte.-nal pressure if the negative bucking value is smaller in magnitude than
the other external pressure buckling values for that moce.
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SECTION VIII

RECOMMENDATIONS

The figures contained in this report can be used directly to obtain the natural vibration
frequencies, buckling values for axial loading, and buckling values for external and internal
pressure for freely-supported cylinders. The vibration frequencies can be obtained for
cylinders subjected to axial loads, and approximate results can be obtained for freely-
supported cylinders subjected to both axial load and external pre-,sure.

Arnold and Warburton (Reference 2) suggest the use of vibration results for the freely-
supported cylinder for cylinders with other boundary conditions by relating these to an equiv-
alent freely-supported cylinder. Equivalent wavelength factors were obtained from experi-
mental vibration results for cylinders with different types of supports and are given in
Reference 2. Through the use of the concept of an equivalent freely-supported cylinder, the
figures and formulas presented could be used to obtain preliminary design values for the
vibration frequencies for loaded or unloaded cylinders as well as buckling values for combined
loadings for cylinders with various boundary conditions.

If the concept of an equivalent freely-supported cylinder is valid for buckling results as
well as for vibration frequencies, the linear approximation between the square of the vibration
frequency and axial load and e dternal pressure may also be valid. If this is the case, vibration
tests could be conducted in connection with static buckling tests to achieve nondestructive
testing. By recording vibration frequencies at various increments of load it may be possible
to extrapolate to the buckling values without damaging costly test specimens or actual
hardware.

Since the natural vibration frequencies for cylinders are sensitive to both boundary condi-
tions and imperfections, it may be possible to obtain better correlation between buckling tests
by using experimental vibration frequencies as an index of imperfection or support restraint.
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The Galerkin method is applird to Flugge' s differential equations for the vibration of a
cylindrical shell utder axial load and external pressure to obtain a 3N x 3N characteristic
equation in matrix form. N is th, number of terms in the assumed series of displacement
functions for the u, v, and w displacements which can be selected to satisfy various
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for axial load and external pressure for all three eigenvalues associated with each mode,
are presented in a series of figures. The square of the vibration frequency for any mode
was found to vary linearly with axial load, and approximately linearly with a pressure
loading for modes with two or more circumferential waves.
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